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Abstract: We consider non-compact branes in topological string theories on a class of

Calabi-Yau spaces including the resolved conifold and its mirror. We compute the ampli-

tudes of the insertion of non-compact Lagrangian branes in the A-model on the resolved

conifold in the context of the topological vertex as well as the melting crystal picture.

They all agree with each other and also agree with the results from Chern-Simons theory,

supporting the large N duality. We find that they obey the Schrödinger equation confirm-

ing the wavefunction behavior of the amplitudes. We also compute the amplitudes of the

non-compact B-branes in the DV matrix model which arises as a B-model open string field

theory on the mirror manifold of the deformed conifold. We take the large N duality to

consider the B-model on the mirror of the resolved conifold and confirm the wave func-

tion behavior of this amplitude. We find appropriate descriptions of non-compact branes

in each model, which give complete agreements among those amplitudes and clarify the

salient features including the role of symmetries toward these agreements.
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1. Introduction

Topological strings have been a very interesting test ground for various dualities. These

dualities in topological strings give us various relations among mathematically seemingly

unrelated objects. One of the well-known examples is the mirror symmetry between the

two Calabi-Yau threefolds. A-model topological string theory on a Calabi-Yau space is

equivalent to B-model topological string theory on the mirror Calabi-Yau space and vice

versa(see, for a review [1 – 4]).

Another relation found recently is the large N duality via geometric transition, which

is a topological incarnation of the open-closed duality or AdS/CFT correspondence. The

A-model open string field theory on the Calabi-Yau spaces of the form T ∗M with N

Lagrangian branes wrapped on M reduces to the U(N) Chern-Simons theory on M [5]. In

particular, Chern-Simons theory on S3 describes the A-model open string theory on the

deformed conifold, T ∗S3. Through the geometric transition, it is found to be equivalent to

the A-model on the resolved conifold [6, 7].
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Traditionally the exact computaion of correlation functions in the topological A-model

was regarded as a difficult one because of the worldsheet instanton contributions. This

has been changed greatly at least for the model on non-compact toric Calabi-Yau spaces,

by introducing topological vertex [8]. Main idea is that the toric Calabi-Yau space can

be regarded as the composition of C
3’s. More concretely, the toric C

3 can be represented

by a toric diagram as a trivalent vertex, and toric Calabi-Yau spaces can be constructed

diagrammatically by gluing these vertices appropriately. The A-model topological string

amplitudes on toric Calabi-Yau spaces can be obtained likewise from the topological vertex,

which is the open string amplitude on C
3 for non-compact A-branes at three legs in the

toric diagram of C
3. Along these lines, the vacuum partition function of the A-model on

the resolved conifold was reproduced. The computation can be easily generalized to the

case when the background contains non-compact Lagrangian A-branes.

Another interesting progress in the A-model has been made from the observation that

the partition function of the topological A model on C
3 is the same as the partition function

of three-dimensional melting crystal filling on the positive octant of R
3 [9]. Again this

relation seems to be generalized to some toric Calabi-Yau spaces. Indeed the vacuum

partition function of the topological A model on the resolved conifold was shown to be

reproduced by considering melting cristal model with an extra wall in one direction [10].

In this melting crystal model, defects play the role of the Lagrangian A-branes. Some

computations along this line has been made in [11].

On the other hand, remarkable progress on the computation of the correlation function

in the topological B-model has been made as well [12]. These developments came from the

realization of the W-algebra governing the correlation functions of the topological B-model

on the class of local Calabi-Yau threefolds which is given by

uv = H(x, y) . (1.1)

The symmetry comes from the holomorphic diffeomorphism of the Calabi-Yau spaces which

preserves the holomorphic three form. All the relevant features of the B-model in this class

of local Calabi-Yau threefolds can be obtained from the Riemann surface which satisfies

H(x, y) = 0 . (1.2)

In this model the non-compact B-brane is identified as a fermion in the Riemann surface.

There is a large N duality in the B-model as well. The B-model on a Calabi-Yau space

Ỹ with the flux on S3 cycle is equivalent to the open B-model on N holomorphic branes

wrapped on P1 in the Calabi-Yau space Y which is related to Ỹ via geometric transition.

The B-model open string field theory on Y becomes Dijkgraaf-Vafa(DV) matrix model [13].

All these relations, including the mirror symmetry and the large N transition, among

various theories are expected to hold for more general background. Especially, the non-

compact branes should play an essential role to establish the full equivalence of those

theories. For instance, in the Chern-Simons theory, viewed as an open string field theory,

the insertion of the non-compact branes gives the generating functional of the correlation

functions of gauge invariant observables, namely knot invariants. It plays the same role in
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the DV matrix model. In the context of the B-model closed strings, the insertion of non-

compact B-brane generates the deformations of complex structure. All these indicate that

it is essential to include non-compact B-branes to establish the full equivalence among these

theories. However, there seems to be some subtleties in the relations among these theories in

the presence of non-compact branes. Those subtleties have often been overlooked, without

causing problems, in the simple model like topological vertex on C
3 and the B-model on

the deformed conifold.

In this paper, we revisit the topological string theories with non-compact branes. We

consider the A-model strings on the resolved conifold and the B-model on its mirror man-

ifold as well as the open strings on their large N dual Calabi-Yau spaces. In particular

we use the topological vertex formalism to compute the amplitudes of the non-compact

Lagrangian brane at the various legs in the toric diagram of the resolved conifold. We also

compute the amplitudes of the defect in the melting crystal model. In the B-model, we

compute the amplitude of non-compact holomorphic brane using the DV matrix model and

use the large N duality to identify it as the amplitude of non-compact brane in the B-model

on the mirror of the resolved conifold. In all these computations, along with the known re-

sults in Chern-Simons theory, we find the correct identification among various parameters

and quantities in these models. We also find how the underlying SL(2 , Z) symmetries are

realized and related among these models with non-compact branes. These computations

show manifestly the wavefunction behavior of the A-model amplitude, which seems to be a

natural consequence of the mirror symmetry. All these show clearly how the non-compact

branes in various models are implemented and how they are connected through the chain

of mirror symmetry and the large N duality in the topological string theories. Very re-

cently, a paper [14] appeared which deals with the amplitudes of non-compact branes in

the B-model on the mirror of the resolved conifold using the fermionic formulation in [12].

The results in the present paper along with their work complete all those dualities in the

presence of the non-compact branes on the class of toric Calabi-Yau spaces.

The organization of this paper is as follows: In the next section, we review various

topological strings theories and related models, partly in order to establish the notations

and the relations among various parameters in those theories. We also review non-compact

branes in the open string field theory on S3 in the deformed conifold, which play the role of

sources in the generating functional of knot invariants in the U(N) Chern-Simons theory

on S3. In section 3, we describe topological vertex and compute the amplitudes of the

non-compact branes at the various legs in the toric diagram of the resolved conifold. In

section 4, we describe the melting crystal models and compute the amplitudes of the defects

and show that they correspond to the non-compact branes in topological vertex as expected.

In section 5, we obtain the B-model amplitudes of non-compact branes in the mirror of

the resolved conifold from the large N dual DV matrix model. In section 6, we show

that all these amplitudes in various models are equivalent obeying the same differential

equations as well as the same transformation rules under SL(2 , Z). In particular we show

the wavefunction behavior of the A-model amplitudes confirming the suggestion from the

mirror symmetry. Finally we draw some conclusions.
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2. Topological string theories and their duals

In this section we review the mirror symmetry which relates the A-model topological string

theory on the resolved conifold and the B-model on its mirror Calabi-Yau space. We also

review the large N duality which connects the closed topological strings on a Calabi-Yau

manifold with the open topological strings on another Calabi-Yau space which is related

to the former via the geometric transition. This large N duality relates the A-model

topological string theory on the resolved conifold with U(N) Chern-Simons theory on

S3, which is an open string field theory on the deformed conifold. We also consider the

amplitude of non-compact branes in the open topological string theories on the deformed

conifold. In U(N) Chern-Simons theory on S3, which is the open topological A model on

deformed conifold, a non-compact brane appears as a Wilson loop and gives rise to the

generating functional of knot invariants.

2.1 The large N duality and the mirror symmetry

In this subsection we explain the large N duality which relates open and closed topological

strings on Calabi-Yau(CY) threefolds and the mirror symmetry which relates the A- and

B-models.

The large N duality in the A-model topological string theory means that two CY

threefold X and X̃ are related by the geometric transition while physics on two CY’s is

identical. As the three cycle S3 wrapped by a large number N of A-branes in X shrinks

down, X becomes a singular CY threefold, and then by blowing up the singular point,

two cycle P1 with RR-flux appears while A-branes on S3 disappear. As a result of this

geometric transition, X becomes another non-singular CY threefold X̃ . The claim is that

in the large N limit, open topological string theory on A-branes is identical to the closed

topological string theory on X̃ .

The deformed conifold X = T ∗S3 can be described by the complex equation as

X ; uv = H(x, y) = xy − µ , (2.1)

where µ may be understood as the complex structure moduli and corresponds to the size of

three cycle S3. We consider A-model topological open strings on N A-branes wrapped on

a Lagrangian submanifold S3. Then the open topological string field theory on A-branes

reduces to the U(N) Chern-Simons theory on S3.

According to the geometric transition we may set µ = 0 and get X̃ by blowing up the

singular geometry as

X̃ ; uz = x , vz′ = y , (2.2)

where z and z′ are inhomogeneous coordinates on P1 and are related by z′ = 1/z. It turns

out that X̃ is the resolved conifold, O(−1) ⊕ O(−1) → P1, which is the total space of

rank two vector bundle over P1. N A-branes on S3 are replaced by the RR-flux on P1

through the geometric transition. According to the large N duality, the closed topological

A-model on this resolved conifold is equivalent to the U(N) Chern-Simons theory on S3.

In the closed string side we have two parameters, the string coupling gs and the Kähler
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Figure 1: Relations among various models

parameter t, while in the gauge theory side we also have two parameters, the gauge coupling

g2
CS and the rank of gauge group N . In this large N duality, they should be identified as

gs = ig2
CS ≡ i

2π

k + N
, t = gsN, (2.3)

where g2
CS is the coupling constant with the finite renormalization effect. Indeed it was

shown in [6] that the vacuum partition function of U(N) Chern-Simons theory can be

resummed using 1
N expansion and shown to be identical with the vacuum partition function

of the topological A-model on the resolved conifold1.

The CY threefold Ỹ mirror to the resolved conifold X̃ can be obtained via a mirror

map as shown by Hori and Vafa [16]. For this purpose let us recall the gauged linear sigma

model(GLSM) or symplectic quotient description of the resolved conifold [17]

X̃ ;
(
|φ1|

2 + |φ2|
2 − |φ3|

2 − |φ4|
2 = Re t

)
/U(1) , (2.4)

where U(1) group acts on the coordinates as

(φ1, φ2, φ3, φ4) → (eiαφ1, e
iαφ2, e

−iαφ3, e
−iαφ4) . (2.5)

Variables between two descriptions of the resolved conifold, X̃ , are related by

x = φ1φ3 , y = φ2φ4 , u = φ2φ3 , v = φ1φ4 , ; z =
1

z′
= φ1/φ2 .

(2.6)

The explicit mirror map is given by

Re Yi = |φi|, yi = e−Yi (2.7)

1The presence of RR flux doesn’t change the partition function of the model [15].
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Figure 2: Toric base for the resolved conifold

and a Landau-Ginzberg superpotential which characterizes the mirror manifold Ỹ is given

by

H(yi) =
∑

i

yi , y1y2 = e−ty3y4 , (2.8)

Note that yi’s are C
∗ variables and the second equation is a constraint coming from GLSM.

One may use the inhomogeneous coordinates to express this curve equation. For

example, one may eliminate y2 using the constraint equation and use C
∗ action to set

y1 = 1. Introducing variables x, y as y3 = −e−x, y4 = −ey, one get the local CY threefold

Ỹ governed by the complex equation

uv = H(x, y) = 1 − ey − e−x + e−t−x+y , (2.9)

on which topological B-model strings are equivalent to the topological A-model strings on

the resolved conifold X̃ .

Since a linear SL(2 , Z) coordinate transformation does not alter the periodicity of x, y

and the holomorphic three-form Ω = dxdydv/v, the mirror manifold Ỹ can be alternatively

described in terms of new variables x̃ and ỹ

(
x̃

ỹ

)
=

(
1 −1

0 1

)(
x

y

)
+

(
−t

0

)
, (2.10)

with a constant rescaling ex+y+πiuv = ũṽ as

Ỹ ; ũṽ = H(x̃, ỹ) = (eỹ − 1)(eỹ+x̃ − 1) − µ̃ , µ̃ ≡ 1 − et , (2.11)

where µ̃ can be interpreted as the complex structure moduli. Note that this geometry is

non-singular for µ̃ 6= 0 and contains three cycles.

In this B-model setting one may also consider analogous large N dual B-model open

topological strings as in the A-model case, which can be achieved by a geometric transition.
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Consider the topological B-model on the above Calabi-Yau space with fluxes on S3. Now

one let the complex structure parameter µ̃ go to zero and the corresponding three cycle

shrinks. Then, new two cycle appears and N B-branes wrapped on this two cycle are dual

to the flux on the shrunken three cycle. The manifold Y relevant for this large N dualized

B-model strings, which is also mirror to the starting geometry X , is given by the blow-up

of the local CY threefold Ỹ with µ̃ = 0 as

Y ; ũz = eỹ − 1 , ṽz′ = eỹ+x̃ − 1 , (2.12)

where z and z′ denote the inhomogeneous coordinates for the blown up P1 and are related

to each other by z′ = 1/z. The open string field theory on B-branes wrapped on P1 reduces

to the Dijkgraaf-Vafa matrix model [18].

2.2 The A-model on the resolved conifold

In this section we summarize some relevant results and establish the notations on the

A-model topological string theory on the resolved conifold for later use. In general the

vacuum partition function of topological closed strings on a Calabi-Yau manifold2 may be

written as

Z(gs, t) ≡ exp [F(gs, t)] = exp

[ ∞∑

g=0

g2g−2
s Fg(t)

]
, (2.13)

where t denotes Kähler and complex structure moduli for A-model and B-model topological

string theory, respectively, and Fg(t) is the genus-g free energy. The topological A-model

closed string amplitude on the resolved conifold was obtained by embedding in physical M

theory [19]. It is given by3

F(gs, t) = Fconst.(gs) +

∞∑

n=1

1

n

e−nt

(2 sin ngs

2 )2
, (2.14)

where Fconst.(gs) denotes the constant map contribution and t is the Kähler modulus of

P1. The genus-g free energy for the resolved conifold can be read as

Fg(t) =
|2g − 1||B2g|

(2g)!

∞∑

n=1

e−nt

n3−2g
+ F const.

g . (2.15)

From now on we adopt different conventions and take the partition function of A-model

topological strings on the resolved conifold as

Z eX (gs, t) = exp
[
F eX (gs, t)

]
= exp

[
F const.(gs) −

∞∑

n=1

1

n

e−nt

(2 sinh ngs

2 )2

]
. (2.16)

2The topological A-model makes sense on Kähler manifolds.
3Note that there is an ambiguity in the expression for g = 0, 1 coming from the non-compactness of the

given CY.
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One may regard this convention is coming from the replacement of the weight g2g−2
s by

another weight (−igs)
2g−2 such that

Z(gs, t) ≡ exp [F (gs, t)] = exp

[ ∞∑

g=0

(−igs)
2g−2Fg(t)

]
. (2.17)

The explicit form of the constant map contribution on the resolved conifold, F const.(gs), is

F const.(gs) =
∞∑

n=1

1

n

1

(2 sinh ngs

2 )2
= ln M(qc) ,

M(qc) ≡

∞∏

m=1

(1 − qm
c )−m , qc ≡ e−gs = q−1 , (2.18)

where M(qc) is the, so-called, Mac-Mahon function with Re gs > 0. In the t → ∞ limit,

the partition function on resolved conifold reduces to the Mac-Mahon function, thus which

is the partition function of topological A-model closed strings on C
3. For the genus g ≥ 2,

the genus-g free energy may also be written as

F const.
g = (−1)g

|B2gB2g−2|

2g(2g − 2)(2g − 2)!
= (−1)g

χ(X̃ )

2

∫

Mg

c3
g−1(H) , g ≥ 2 , (2.19)

where B2g is a Bernoulli number and χ(X̃ ) is the Euler characteristic of the CY manifold

X̃ .

2.3 Non-compact branes in the open topological A model

The amplitude of non-compact branes can be easily incorporated in the Chern-Simons

theory. Our starting set up is A-model topological open strings on the deformed conifold

X = T ∗S3 with a large number N of A-branes wrapped on a Lagrangian submanifold

S3 and another M non-compact A-branes wrapped on a different Lagrangian submanifold

L = R
2 × S1, where these two types of A-branes meet on S1 ⊂ S3. As alluded in the

previous section, after the geometric transition the geometry becomes the resolved conifold,

O(−1) ⊕ O(−1) → P1. While A-branes on S3 are replaced by the RR-flux on P1 in this

large N transition, M non-compact A-branes wrapped on L is argued to remain as the

Lagrangian A-branes on the resolved conifold X̃ .

In this case the open string field theory on X is reduced to Chern-Simons theories on

two three dimensional Lagrangian submanifold. If we denote the gauge fields on S3 and

R
2 × S1 as A and A′, respectively, then, the effective theory is described by the action

SCS [A ; S3] + SCS [A′ ; R
2 × S1] + Sint[φ ,A ,A′ ;S1] , (2.20)

where SCS denotes the standard Chern-Simons action. The surviving degree of freedom

of open topological strings for Sint[S
1] is a complex scalar field on the circle which is bi-

fundamental in the gauge group U(N)×U(M). Since Sint[S
1] is quadratic in the complex

– 8 –
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scalar field, we can integrate out and obtain the operator, which was first introduced by

Ooguri and Vafa [20],

Z(U, V ) ≡ exp
[ ∞∑

n=1

1

n
tr Un tr V n

]
, (2.21)

where “tr” denotes the trace for the fundamental representation and U , V −1 are the holon-

omy matrices around S1 defined by

U ≡ Pe
H
S1 A , V −1 ≡ Pe

H
S1 A′

. (2.22)

Using Frobenius character formula, one can get

Z(U, V ) =
∑

µ

TrµU TrµV , (2.23)

where Trµ denotes the trace over an irreducible representation µ. Since an irreducible

representation for U(N) is one-to-one correspondent with a partition or Young diagram, µ

is specified by non-decreasing non-negative integers as µ = {µ1 ≥ µ2 ≥ · · · ≥ µn ≥ 0}.

Gauge fields A′ on non-compact branes can be treated as non-dynamical ones or

‘source’ terms from the viewpoint of U(N) gauge theory on S3. Therefore the opera-

tor (2.21) may be regarded as a generating functional for Wilson loop observables in all

representations µ

〈Z(U, V )〉S3 =
∑

µ

〈TrµU〉S3TrµV . (2.24)

This is another example that the string theory leads to a generating functional of field

theory naturally. The Wilson loop observable 〈TrµU〉S3 was calculated explicitly in [21] for

the unknots as

〈TrµU〉S3 =
S•µ

S••
= sµ(q

N
2
−i+ 1

2 ) ≡ dimq µ , (2.25)

where Sµν is the matrix elements of S-transformation of SL(2, Z) to get S3 by gluing two

solid torus. The function sµ(xi) (i = 1, 2, . . . , N .) is Schur function introduced in the

appendix with some relevant properties, and dimq µ is the, so-called, quantum dimension

of the representation µ, which reduces to the ordinary dimension of the representation µ

in the classical limit q = egs → 1. The concrete expression of (2.25) can be found in the

appendix.

Since the orientation is reversed for anti-branes, the amplitude for anti-brane insertion

is given by

Z−1(U, V ) = exp
[
−

∞∑

n=1

1

n
tr Un tr V n

]
=

∑

µ

(−1)|µ|TrµtUTrµV , (2.26)

which leads to the knot invariants for the unknots

〈Z−1(U, V )〉S3 =
∑

µ

(−1)|µ|sµt(q
N
2
−i+ 1

2 ) TrµV . (2.27)
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3. Non-compact branes in the topological vertex

Topological vertex is the main computational tool for the study of topological A-model

on toric Calabi-Yau space [8]. In this section we describe the non-compact branes in

the context of topological vertex. Firstly, we describe the topological vertex formalism

emphasizing the role of symmetries. We explain the subtleties in the realization of these

symmetries through the amplitude. We show this in detail for the case of resolved conifold.

Then we consider the insertion of non-compact branes at the external legs in the toric

diagram of the resolved conifold, which is believed to be the dual of the non-compact

brane configurations in Chern-Simons theory. As will be explained later, this is deeply

related to the mirror B-model where the amplitude is realized as a wavefunction.

3.1 The topological vertex

The toric diagram of the Calabi-Yau space can be decomposed into the set of vertices which

are connected by lines(propagators) [8]. This is basically because each vertex represents

C
3 and a toric Calabi-Yau space can be regarded as a union of C

3 in such a way that C
∗

action is well-defined globally. The manifold C
3 may be regarded as a total space of T2×R

fibration over R
3, where T2 fiber space can be taken as the orbit of the following action

α ; (z1, z2, z3) −→ (e−iαz1, z2, e
iαz3) ,

β ; (z1, z2, z3) −→ (eiβz1, e
−iβz2, z3) . (3.1)

The moment maps for these actions is given by

rα = |z3|
2 − |z1|

2 , rβ = |z1|
2 − |z2|

2 . (3.2)

The trivalent vertex corresponds to the degeneration loci of T2 in the R
2 subspace of R

3

base and consists of three edges or legs denoted as two-dimensional vectors vi = (pi, qi),

satisfying
3∑

i=1

vi = 0 , (3.3)

and

v2 ∧ v1 = v1 ∧ v3 = v3 ∧ v2 = 1 , (3.4)

with the wedge product defined by vi ∧ vj = piqj − qipj.

Now consider an open string amplitude for this vertex with Lagrangian A-branes at-

tached in all three legs. Then the total open string partition function may be written

as

Z(Vi) =
∑

λ,µ,ν

Cλµν TrλV1 TrµV2 TrνV3 , (3.5)

where Vi is a source associated to the Lagrangian submanifold at the i-th leg and the

summation is taken over all possible irreducible representations. This partition function

can be determined from the link invariants of U(∞) Chern-Simons theory on S3 [8]. The

explicit expression of the topological vertex amplitude, Cλµν , in terms of Schur function is

given in the appendix.
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The crucial point is that the topological vertex amplitude which is obtained from the

above computations of open string amplitude, corresponds to the closed string amplitude

on C
3 with boundaries due to external branes. If we want to find the A-model closed string

partition function on C
3, we simply take the trivial representation for all three legs.

Framing. In the above computations of topological vertex, we used non-compact La-

grangian branes in C
3. In order to fully specify the model, we need to give the boundary

conditions on the fields on these non-compact branes at infinity [22 – 24]. This is called a

framing in the topological vertex and corresponds to the framing in the dual Chern-Simons

theory. This boundary condition can be specified by modifying the geometry and allowing

the T 2 fiber to degenerate at additional locations in the base R
3 so that the Lagrangian

branes wrap on compact S3 cycles. This can be done without affecting the topological

A-model amplitudes. Those additional degeneration loci are specified by three vectors fi

satisfying

fi ∧ vi = 1 . (3.6)

It is clear that the above condition is still satisfied with the replacement fi → fi − nivi

for any integer ni. A framing is the choice of the integer ni. We choose the framing,

(f1, f2, f3) = (v2, v3, v1) as the canonical one and denote all other choices of framing as

three numbers ni relative to this canonical framing.

The topological vertex in the (n1, n2, n3) framing, Cn1,n2,n3

λµν , is related to the topological

vertex in the canonical one, Cλµν , by the relation:

Cn1,n2,n3

λµν = (−1)n1|λ|+n2|µ|+n3|ν|q
1

2
(n1κλ+n2κµ+n3κν)Cλµν . (3.7)

Symmetries. The topological vertex with trivial representation at three legs has S̃L(2, Z)

symmetries inherited from those of T 2 fiber of C
3. Since the wedge product is invariant

under the S̃L(2, Z) transformation, we can use this S̃L(2, Z) transformation to change vi

at our disposal. For example, we can permute vi cyclically and obtain a cyclic symmetry

Z3. This S̃L(2, Z) symmetry acts on the vertex amplitude through the replacement:

(fi, vi) −→ (g̃ · fi, g̃ · vi) , g̃ ∈ S̃L(2, Z) (3.8)

In what follows, we will consider the SL(2, Z) transformations acting on vi only,

(fi, vi) −→ (fi, g · vi) , g ∈ SL(2, Z) (3.9)

This is in general not a symmetry of the system, thus one should distinguish it from the

S̃L(2, Z) given in (3.8). One may regard this as a passive transformation. One can also

consider the active transformation acting fi only, which moves a non-compact brane at one

leg to the one at another leg, while leaving each leg, vi, invariant. These two viewpoints is

connected by the S̃L(2, Z) symmetry acting on both vi and fi as in (3.8).

The topological vertex amplitude Cλµν is invariant under the Z3 subgroup of SL(2, Z)

which takes

v1 → v2 , v2 → v3 , v3 → v1 . (3.10)
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This Z3 transformation can be realized as TS−1 matrices transforming vi = (pi, qi) as a

doublet, where

S =

(
0 −1

1 0

)
, T =

(
1 1

0 1

)
. (3.11)

This, in turn, becomes an active ST−1 transformation of SL(2, Z) acting on fi. This results

in the cyclic symmetry of the amplitude Cλµν .

Cλµν = Cµνλ = Cνλµ . (3.12)

The change of framing may also be understood as an active T transformation of SL(2, Z).

The topological vertex for C
3 has also a Z2 symmetry from the exchange of z1 and z2

coordinates of C
3.

Cλµν = q
1

2
(κλ+κµ+κν)Cλtνtµt . (3.13)

Note this is not an SL(2, Z) transformation.

Resolved conifold. The whole closed string amplitude of the toric Calabi-Yau space

containing more than single vertex can be obtained by gluing appropriately these vertices.

The explicit rules for gluing vertices can be found in [8]. For example, the toric diagram

for the resolved conifold is given by two vertices connected by a line of length t, Kähler

moduli of P1.

Using the Schur function representation of the topological vertex given in the appendix,

one can easily write the vacuum partition function of the closed string for the resolved

conifold as

Ztv(gs, t) =
∑

µ

C••µt(−e−t)|µ|Cµ•• =
∑

µ

sµt(qρ)sµ(−e−tqρ) , (3.14)

where µt denotes the transpose of µ. It becomes, through the identity of Schur functions

given in (A.15),

Ztv(gs, t) =

∞∏

i,j=1

(1 − e−tq−i−j+1) = exp

[
−

∞∑

n=1

e−nt

n

1

[n]2

]
, (3.15)

where [n] is the so-called q-number defined by

[n] ≡ q
n
2 − q−

n
2 , q ≡ egs . (3.16)

Note that Ztv(gs, t) is identical with Z eX (gs, t) up to the factor M(qc). This non-existence

of M(qc) is a general feature of the topological vertex calculation and should be taken into

account when the corresponding quantities in the dual theories are compared.

3.2 Non-compact branes in the topological vertex

In this section, using topological vertex formalism we compute the amplitudes of non-

compact branes on the resolved conifold at the various positions.
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Figure 3: Canonically framed A-branes, f3 and f ′

3
, on the external legs v3 and v′

3

Branes at an external leg. The amplitude of non-compact branes at an external, non-

compact, leg can be obtained by the replacement

Cν•• −→
∑

µ

(e−r)|µ|(−1)p|µ|q
1

2
pκµCν•µTrµV ,

where p denotes a framing. Therefore the normalized amplitude for ‘f3’ A-branes with the

framing p at the position ‘r’ on the external leg v3 in the toric diagram for the resolved

conifold, shown in figure 3, can be calculated in the formalism of topological vertex as

Zf3

A (V, r, p) =
1

Ztv(gs, t)

∑

µ

[∑

ν

(e−r)|µ|(−1)p|µ|q
1

2
pκµC••νt(−e−t)|ν|Cν•µ

]
TrµV (3.17)

=
1

Ztv

∑

µ

[
e−r|µ|(−1)p|µ|q

1

2
(p+1)κµ

∑

ν,λ

sνt(−e−t qρ)sµt/λ(qρ)sν/λ(qρ)

]
TrµV ,

where we used eq.s (A.18) for Cν•µ = C•µν and Ztv denotes the vacuum partition function

of A-model topological strings on the resolved conifold given in (3.15). Using the identities

for Schur functions given in eq. (A.15) and eq. (A.17), we obtain

Zf3

A (V, r, p) =
∑

µ

[
e−r|µ|(−1)p|µ|q(p+1)

κµ

2

∑

λ

sµt/λ(qρ)sλt(−e−t qρ)

]
TrµV (3.18)

=
∑

µ

(−1)|µ|
[
e−r|µt|(−1)(p+1)|µt|q−(p+1)

κ
µt

2 q−
N
2
|µt|sµt(q

N
2
−i+ 1

2 )

]
TrµV ,

where we used κµt = −κµ, |µ| = |µt|, and t = gsN . Note that the amplitude of non-compact

branes on the external leg v′3

Z
f ′
3

A (V, r, p) =
1

Ztv

∑

µ

[∑

ν

(e−r)|µ|(−1)p|µ|q
1

2
pκµC•µνt(−e−t)|ν|Cν••

]
TrµV , (3.19)

is completely identical with the above Zf3 because of the symmetry of the topological

vertex. Henceforth, it is enough to consider only one case.
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Figure 4: Canonically framed A-branes, f2 and f ′

2
, on the external legs v2 and v′

2

Anti-branes can be obtained by the orientation reversal of branes, which can be

achieved by vi → −vi. Therefore the amplitude of anti-branes at the position ‘r’ on

the external leg v3 is given by

Zf3

Ā
(V, r, p) =

1

Ztv

∑

µ

[
e−r|µ|

∑

ν

(−1)p|µ
t|q

1

2
pκµt (−1)|µ|C••νt(−e−t)|ν|Cν•µt

]
TrµV

=
∑

µ

[
e−r|µ|(−1)(p+1)|µ|q−(p+1)

κµ

2 q−
N
2
|µ|sµ(q

N
2
−i+ 1

2 )

]
TrµV . (3.20)

In contrary to C
3 case, in which the amplitudes for branes and anti-branes at the same leg

are related by the framing change, the amplitudes for branes and anti-branes are completely

different in the resolved confold case.

On the other hand the amplitudes for the (anti) A-branes at the external leg v2 or v′2
shown in figure 4 are computed as

Zf2

A (V, r, p) =
1

Ztv

∑

µ

[∑

ν

(e−r)|µ|(−1)p|µ|q
1

2
pκµC••νt(−e−t)|ν|Cνµ•

]
TrµV

=
∑

µ

[
e−r|µ|(−1)p|µ|q

1

2
pκµq−

N
2
|µ|sµ(q

N
2
−i+ 1

2 )

]
TrµV , (3.21)

and

Zf2

Ā
(V, r, p) =

∑

µ

(−1)|µ|
[
e−r|µt|(−1)−p|µt|qp

κ
µt

2 q−
N
2
|µt|sµt(q

N
2
−i+ 1

2 )

]
TrµV , (3.22)

respectively. Note that there are relations between amplitudes of (anti) A-branes at the

external legs v2 and v3 such that

Zf2

Ā
(V, r, p) = Zf3

A (V, r,−p − 1) , Zf2

A (V, r, p) = Zf3

Ā
(V, r,−p − 1) . (3.23)

In general we don’t expect any relation between branes and anti-branes. However, for the

resolved conifold, there is a Z2 symmetry on the geometry exchanging two external legs,
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and this symmetry is realized as the above relations between amplitudes of branes and

anti-branes. It is the same symmetry which exists in C
3 case, alluded earlier in (3.13). As

we will see, this aspect will be realized in the mirror B-model setup in the next section,

through the wavefunction behavior of the amplitudes under Z2.

Special cases of the branes at an external leg. For a single (anti)-brane, the holon-

omy for ‘source’ V is given by one-dimensional matrix as V = e−iθ, since the gauge group

is U(1). Then, by combining with this Wilson line, the position modulus r becomes com-

plexified one, x = r + iθ. Furthermore, representations for U(1) correspond to single row

Young diagrams. As a result, the amplitudes for a single brane and anti-brane become

Zf3

A (x, p) = Zf2

Ā
(x,−p − 1) =

N∑

n=0

[
N

n

]
q−

n
2
(N−(p+1)(n−1))(−1)pne−xn , (3.24)

Zf3

Ā
(x, p) = Zf2

A (x,−p − 1) =

∞∑

n=0

[
N + n − 1

n

]
q−

n
2
(N+(p+1)(n−1))(−1)(p+1)ne−xn ,(3.25)

where
[N+n−1

n

]
and

[N
n

]
denote quantum dimensions for a single row and a single column

representation. These are explicitly given by

[
N

n

]
≡

[N ]!

[n]! [N − n]!
= q

N
2

n hn(q−
1

2 , q−
3

2 , . . . , q−N+ 1

2 ) ,

[
N + n − 1

n

]
≡

[N + n − 1]!

[n]! [N − 1]!
= q

N
2

n en(q−
1

2 , q−
3

2 , . . . , q−N+ 1

2 ) ,

where hn and en are completely symmetric functions and elementary symmetric functions,

respectively, related to Schur functions as (A.2) and

[n]! ≡ [n][n − 1] · · · [1] , [0] ≡ 1 .

Note that

N∏

n=1

(1 − q−(n+N1))−1 =
∞∑

n=0

q−n(N1+
1

2
)hn(q−

1

2 , q−
3

2 , . . . , q−N+ 1

2 ) , (3.26)

and
N∏

n=1

(1 − q−(n+N1)) =

N∑

n=0

q−n(N1+
1

2
)(−1)nen(q−

1

2 , q−
3

2 , . . . , q−N+ 1

2 ) . (3.27)

By taking N → ∞ limit, we can reproduce the (anti-)brane amplitudes on C
3. Note

that in the C
3 case brane amplitudes at framing p are identical with anti-brane amplitudes

at framing −p − 1 in the same leg due to the combination of Z2 and Z3 symmetry of C
3.

In a particular framing, these single (anti-)brane amplitudes can be represented as

product forms as

Zf3

A (x, p = −1) = Zf2

Ā
(x, p = 0) =

N∏

n=1

(1 − e−xq−n+ 1

2 ) ,
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Zf3

Ā
(r, p = −1) = Zf2

A (x, p = 0) =

N∏

n=1

(1 − e−xq−n+ 1

2 )−1 . (3.28)

These forms are relevant for the comparison with the results from melting crystal picture

as will be shown in the next section.

Branes at an internal leg. Now let us consider non-compact branes, f1, on the internal

compact leg, v1 = v′1, of the toric diagram for the resolved conifold in figure 5. In this

case, we consider M stacks of a single (anti-)brane with zero framing, to compare with

the results in melting crystal picture. The amplitude of M stacks of a single brane on the

compact leg at the position ra, a = 1, . . . ,M with zero framing is

Zf1

A (ra) =
1

Ztv

∑

µ,αa,βa

C••µ⊗M
a=1

αa
(−e−t)|µ|e−

P
a(ra|αa|+(t−ra)|βa|)Cµt⊗M

a=1
βa••

×

M∏

a=1

TrαaVaTrβa
V −1

a

=
M∏

a=1

∑

αa,βa

sαa(e−raqρ)sβa
(e−(t−ra)qρ) TrαaVaTrβa

V −1
a . (3.29)

Again we can complexify the position modulus x = r + iθ by including the Wilson line

V = e−iθ and obtain the amplitude of a single brane as

Zf1

A (x) =
∞∑

m,n=0

e−mxhm(qρ) e−n(t−x)hn(qρ)

=

∞∏

m=1

(1 − e−xq−m+ 1

2 )−1
∞∏

n=1

(1 − e−(t−x)q−n+ 1

2 )−1 . (3.30)

Similarly, the amplitude of M stacks of a single anti-brane on the compact leg with zero

framing at the position ra is

Zf1

Ā
(ra) =

1

Ztv

∑

µ,αa,βa

C••µ⊗αt(−e−t)|µ|Cµt⊗βt
a••

×

M∏

a=1

(−1)|αa|+|βa|e−ra|αa|−(t−ra)|βa|TrαaV Trβa
V −1

=
M∏

a=1

∑

αa,βa

sαt
a
(−e−raqρ)sβt

a
(−e−(t−ra)qρ) TrαaV Trβa

V −1 . (3.31)

After the same complexification of the position modulus, the amplitude of an anti-brane

becomes

Zf1

Ā
(x) =

∞∑

m,n=0

e−mxem(−qρ) e−n(t−x)en(−qρ)
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Figure 5: Canonically framed A-branes, f1 on the internal leg v1

=

∞∏

m=1

(1 − e−xq−m+ 1

2 )

∞∏

n=1

(1 − e−(t−x)q−m+ 1

2 ) . (3.32)

All these branes irrespectively to the internal or external leg insertions have the natural

limit to C
3 case by taking Re t(or N) → ∞. The resultant topological A-model partition

function on C3 in the presence of the A-brane at the position “r” with zero framing4 can

be written as

Z(gs, r) ≡ eF (gs,r) = exp

[ ∞∑

n=1

1

n

e−nr

2 sinh(ngs

2 )

]
= exp

[ ∞∑

n=1

1

n

e−nr

[n]

]
=

∞∏

k=1

(1 − e−rq−n+ 1

2 )−1 .

(3.33)

4. Defects in the melting crystal model

In this section we consider the melting crystal model [9] which seems to be the another

realization of the topological A-model. In particular we consider (anti-)defects in the

melting crystal model which corresponds to the non-compact branes in the topological A-

model on the resolved conifold [11]. Since these defects were considered recently in [25, 26],

we will be brief and present main results which clearly show the correspondence with the

topological A-model.

As noted earlier, the vacuum partition function of the topological A-model closed

strings on C
3 is given by eq. (2.18). This is identical with the partition function of the

melting crystal of cubic lattice in the positive octant of R3,

Zcrystal(qc) =
∑

3d partition

q# boxes
c , (4.1)

where qc = e−gs . This observation led to the conjecture that there exists more general

melting crystal picture for topological A-model strings on toric Calabi-Yau spaces.

The 3d partition can be regarded as the composition of 2d partitions satisfying the, so-

called, interlacing conditions. Conversely speaking, 2d partitions satisfying the interlacing

4This is equivalent with anti A-brane with p = −1 framing.
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Figure 6: melting crystal model for the resolved conifold

condition appear as slicings of the 3d partition. This is clear from the equivalence between

the partition and Young diagrams. However, this decomposition of the 3d partition into

2d partitions is not unique. We will adopt the convention in which the diagonal slicing is

given by y = x on the positive octant (x, y, z) ∈ R
3
+.

Two dimensional Young diagram can be represented in terms of a fermionic Fock space.

In the transfer matrix formalism, we adopt this and assign a fermionic Fock space to each

two dimensional partition. In this formalism we introduce the operators Γ± which satisfy

the relations

Γ+(z)Γ−(z′) =
1

1 − z/z′
Γ−(z′)Γ+(z) , Γ+(z)Γ−1

− (z′) =
(
1 −

z

z′

)
Γ−1
− (z′)Γ+(z) . (4.2)

These operators can be realized in terms of a simple harmonic oscillators αm, which are

modes of the bosonization of the fermions, as Γ+(z) = exp [
∑

n≥1
αn

n zn] and Γ−(z) =

exp [
∑

n≥1
α−n

n z−n] with [αm, αn] = mδm+n,0.

A melting crystal model for the resolved conifold X̃ is suggested [10] as the lattice in

units of gs in the positive octant R
3
+ with one wall, for example, at the position y = gsN ,

see figure 6. The partition function of this melting crystal model is given by

Zcrystal(N, qc) =
〈
0
∣∣∣
[ ∞∏

n=1

Γ+(qn−1/2
c )

][ N∏

m=1

Γ−(q−m+1/2
c )

]∣∣∣0
〉

= M(qc)
∞∏

n=1

(1 − qn+N
c )n .

(4.3)

One may recall qc = q−1 to see that the partition function is identical with Z eX (gs, t)

in (2.16) by performing a resummation and setting gsN = t. In this melting crystal model,

the length from the origin to the wall at the position y = gsN corresponds to the Kähler

moduli t of the resolved conifold. This suggests that x-axis and y-axis may correspond to

the external and internal leg, respectively, of toric diagram for the resolved conifold X̃ .

Defects. A defect in the melting crystal model corresponds to a single non-compact A-

brane in the topological A-model. Defect and anti-defect operators in melting crystals are

introduced as certain fermionic operators

ΨD(z) ≡ Γ−1
− (z)Γ+(z) , ΨD̄(z) ≡ Γ−(z)Γ−1

+ (z) . (4.4)
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The partition function with one defect on the x-axis at the position x = gs(N1 + 1/2) is

given by inserting ΨD(z = q
N1+ 1

2
c ) at the appropriate position as,

ZD(N1 ; N, qc) = (4.5)

=

〈
0

∣∣∣∣
[ ∞∏

n=N1+2

Γ+(q
n− 1

2
c )

]
ΨD(q

N1+ 1

2
c )

[ N1+1∏

n=1

Γ+(q
n− 1

2
c )

] N∏

m=1

Γ−(q
−m+ 1

2
c )

∣∣∣∣0
〉

.

Using the commutation relations between Γ’s we obtain

ZD(N1 ; N, qc) = [ξ(qc)]
−1Zcrystal(N, qc)

N∏

n=1

1

1 − qn+N1
c

. (4.6)

where ξ(qc) ≡
∏∞

n=1(1 − qn
c ). After normalizing by [ξ(qc)]

−1Zcrystal(N, qc), the amplitude

of a defect on the x-axis at x = gs(N1 + 1/2) becomes identical with the amplitude, given

in eq. (3.28), of a non-compact brane with p = 0 at the external leg v2 (also v′2) with the

complexified modulus x = gs(N1 + 1/2) in the toric diagram of the resolved conifold, see

figure 4.

It is straightforward, following the argument of the C
3 case in [11], to get the normalized

amplitude for d defects as

Znorm
D (Ni, qc) =

∏

1≤i<j≤d

(1 − q
Nj−Ni
c )

d∏

i=1

N∏

n=1

1

1 − qn+Ni
c

, (4.7)

with Ni < Nj for i < j.

The amplitude for an anti-defect at x-axis can be obtained by inserting ΨD̄(q
N1+1/2
c )

instead and is given by

ZD(N1 ; N, qc) = [ξ(qc)]Z
crystal(N, qc)

N∏

n=1

(1 − qn+Ni
c ) . (4.8)

The normalized amplitude of anti-defect is identical with the amplitude of a non-compact

anti-brane with p = 0 at the external leg v2 (also v′2) in the toric diagram of the resolved

conifold. The normalized amplitude of multi anti-defects at x-axis can be computed in the

similar fashion as in the multi defect case and is given by

Znorm
D̄ (Ni, qc) =

∏

1≤i<j≤dt

(1 − q
Nj−Ni
c )

dt∏

i=1

N∏

n=1

(1 − qn+Ni
c ) . (4.9)

A couple of comments are in order for the amplitude of (anti-)defects inserted on the

y-axis. First of all, when we use the formula for ΨD and Γ±, (4.4), z is determined by the

slicing one takes. We use different z for the defect on the y-axis from z for the defect on the

x-axis, which are inverse to each other and are due to the diagonal slicing. Secondly, since

the insertion of (anti-)defects on the y-axis corresponds to (anti-)branes in the topological

A-model inserted at P1, we generally expect the change of Kähler parameter of P1, and it

appears as the shift of the position of the wall in the melting crystal model [10, 25].

– 19 –



J
H
E
P
1
1
(
2
0
0
6
)
0
7
5

We would like to emphasize that, as will be shown below, the defect on the y-axis

corresponds to the anti-brane with p = 0 at the compact leg v1 in the toric diagram of the

resolved conifold. This implies that we should interchange the name of defect and anti-

defect operators defined on y-axis if we want to have the correspondence of the naming

of brane/anti-brane with p = 0 in topological vertex with defect/anti-defect, independent

of the inserted axis. In the case of C
3, this was not clear since the amplitude of the

non-compact brane with p = −1 is the same as the amplitude of the non-compact anti-

brane with p = 0 due to Z2 and Z3 symmetries. By considering more general space, we

could identify the correct defect/anti-defect operators corresponding to the brane/anti-

brane operators.

The amplitude of the defect insertion on the y-axis at the position y = gs(N1 + 1/2)

can be computed by inserting ΨD(z = q
−N1−1/2
c ) at the appropriate position and is given

by

ZD(N1;N, qc) = (4.10)

=

〈
0

∣∣∣∣
[ ∞∏

n=1

Γ+(q
n− 1

2
c )

][ N1+1∏

m=1

Γ−(q
−m+ 1

2
c )

]
ΨD(q

−N1−
1

2
c )

N+1∏

m=N1+2

Γ−(q
−m+ 1

2
c )

∣∣∣∣0
〉

.

As a result, the normalized amplitude

Znorm
D (N1 ; N, qc) =

∞∏

m=1

(1 − qm+N1

c )
∞∏

n=1

(1 − qn+N−N1

c ) . (4.11)

As was mentioned earlier, this corresponds to the topological vertex amplitude (3.30) of

the non-compact anti-branes with p = 0 inserted at the compact leg v1 in the toric diagram

of the resolved conifold. Similarly, we can compute the normalized amplitude of the anti-

defect insertion on the y-axis at the position y = gs(N1 + 1/2) and find

Znorm
D̄ (N1 ; N, qc) =

∞∏

m=1

(1 − qm+N1

c )−1
∞∏

n=1

(1 − qn+N−N1

c )−1 . (4.12)

This in turn corresponds to the amplitude of the non-compact brane inserted at v1 leg with

p = 0. It is straightforward to generalize those in the above to the amplitude of multi-

(anti-)defects insertion at y-axis as shown in the case of those at x-axis and is omitted.

5. The B-model on the mirror of the resolved conifold

In this section we consider the B-model topological string theory on the mirror space of the

resolved conifold. At the beginning we review some salient features of the B-model on some

class of the Calabi-Yau spaces. Then we compute the amplitudes of the non-compact brane

insertion in the open topological B-model on the mirror space of the deformed conifold in

the context of DV matrix model. We regard those as the amplitudes of non-compact

branes in the topological B-model on the mirror space of the resolved conifold through the

large N duality. We show that they satisfy the Schrödinger wave equation confirming the

wavefunction nature of the amplitude in the B-model topological string theory.
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5.1 The B-model

The topological B-model on the Calabi-Yau space gives the informations on the complex

structure moduli space. The symmetries of the B-model on the Calabi-Yau space involve

holomorphic diffeomorphisms which preserve the curve equation, like (2.11), and the holo-

morphic 3-form

Ω =
1

4π2

dx ∧ dy ∧ du

u
. (5.1)

The Calabi-Yau geometry characterized by the curve equation of the form

uv = H(x, y) (5.2)

can be regarded as a fibration over the (x, y) plane with one dimensional fibers. The surface

satisfying

H(x, y) = 0 (5.3)

in the base manifold is the locus where the fiber degenerates into two components u = 0 and

v = 0. It was shown in [12] that this type of CY geometry is characterized by the algebraic

curve (5.3) and the complex deformations of the CY are captured by the canonical one-

form, λ = ydx. Therefore if one considers the deformation of the function H(x, y), while

keeping u, v fixed, the target space theory of B-model, namely Kodaira-Spencer theory,

essentially reduces to the one on the Riemann surface (5.3). The Kodaira- Spencer field φ

is related to the one form λ by λ = ∂φ. When restricted to the Riemann surface (5.3), they

become the symplectic diffeomorphisms which preserve the equation (5.3) and symplectic

two-fom dx ∧ dy of the base manifold. In the quantum Kodaira-Spencer theory, they are

realized as the W-algebra symmetry.

The Riemann surface satisfying H(yi) = 0 in (2.8) is a genus 0 surface, i.e. a sphere,

with four boundaries or punctures. Near each puncture we can choose a local coordinate

x and its conjugate pair y such that x → ∞ and y → 0 at the puncture (see, for example,

the discussion leading (2.9)). Since the complex deformations of the Riemann sphere can

arise only at the boundaries, it is enough to consider the deformation generated by the

insertion of non-compact B-branes near the punctures. Since (x, y) is a symplectic pair in

the geometry and, furthermore, the action of non-compact B-branes near the x-patch is

given by

SB =
1

gs

∫
y∂̄x , (5.4)

y naturally plays the role of conjugate momentum of x in the quantization of branes with

the commutation relations

[y, x] = gs . (5.5)

As noted in the above, this conjugate pair is deeply related to the Kodaira-Spencer field φ

through the one-form λ by λ = ydx = ∂φ.

Similarly, one can assign an appropriate coordinate and its conjugate momentum near

each patch. The non-compact brane near one patch can be moved around and can be

connected with the one in another patch by the SL(2 , Z) coordinate transformations. This
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SL(2 , Z) transformation is the symplectic diffeomorphism which preserves the symplectic

two form dx ∧ dy and the periodicity of the coordinates x, y. There is also freedom in the

choice of (x, y), in particular, coordinate transformation of the form

x → x + ny , y → y ,

where n is an arbitrary integer. This is also a part of the symplectic diffeomorphism,

SL(2 , Z) and is called a framing in the B-model. As will be clear, it is closely related to

the framing in the mirror topological A-model or topological vertex.

In the case of anti-branes, the action becomes the minus of the action of branes,

SB̄ = −SB, and thus, in the quantization, the conjugate momentum of x becomes −y

which results in the commutation relation, [y, x] = −gs.

5.2 Non-compact branes in topological B-model

Non-compact B-branes inserted near a puncture in the Riemann surface are described

by free chiral fermions [8] which is related to the Kodaira-Spencer field φ by ψ(x) =

exp (φ(x)/gs). In general, the B-model amplitudes behave as a wavefunction [27]. In

particular, one-point function of a fermion which corresponds to the amplitude of single

non-compact brane insertion should satisfy the Schrödinger equation whose Hamiltonian

is given by the equation of the Riemann surface [12]:

H(x, y = gs∂x)〈ψ(x)〉 = 0 . (5.6)

The anti-chiral fermion corresponding to an anti-brane can be represented by ψ∗(x) =

exp (−φ(x)/gs) and satisfies

H(x, y = −gs∂x)〈ψ∗(x)〉 = 0 . (5.7)

Instead of obtaining the one-point function of a fermion directly from the closed B-

model, we consider the amplitude of the non-compact brane in the context of the large

N dual open B-model on Y, which is also the mirror of the deformed conifold. For this

purpose it is convenient to use the coordinate transformation alluded earlier in section 2.1

and use the curve equation H(x̃, ỹ) = 0 in eq. (2.11) and take the geometric transition.

The resultant open string field theory reduces to DV matrix model with the partition

function

Z =
1

vol(U(N))

∫
dHU exp

( 1

2gs
TrU2

)
(5.8)

where U is a Hermitian matrix and the measure dHU is the unitary one [18]. When

expressed in terms of the diagonal components, the partition function reduces to

Z =

∫ N∏

i

dui

∏

i<j

sin2
(ui − uj

2

)
exp

[ 1

2gs

∑

i

u2
i

]
(5.9)

In this large N duality, the non-compact B-branes presumably remain as the non-

compact B-branes, meeting the compact one at a point. The surviving degree of freedom
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of open string modes connecting these branes is a bi-fundamental complex scalar whose

path integral is given by
∫

Dφ̄Dφ exp
[
− φ̄(V ⊗1N×N −1M×M ⊗U)φ

]
=

[
det(V ⊗1N×N −1M×M ⊗U)

]−1
, (5.10)

where U and V are matrices from compact and non-compact branes, respectively.

If we consider M non-compact branes at the M different positions as e−v1 , . . . e−vM on

P1, the matrix V becomes V = diag (e−v1 , . . . e−vM ) and thus we have

〈 1

det(e−v1 − U)

1

det(e−v2 − U)
· · ·

1

det(e−vM − U)

〉
. (5.11)

where the expectation value is taken with respect to U . Therefore the amplitude of a

non-compact holomorphic brane is given by
〈

1
det(e−v−U)

〉
and using

〈TrµU〉 = q
N
2
|µ|q

κµ

2 dimq µ , q = egs (5.12)

we obtain 〈 1

det(e−v − U)

〉
=

∞∑

n=0

[
N + n − 1

n

]
q

n
2
(N+n−1)(ev)N+n . (5.13)

One may consider this as the amplitude of a non-compact brane in the topological

B-model on Ỹ through the large N duality

〈ψ(x̃)〉 =
〈 1

det(e−x̃ − U)

〉
. (5.14)

Indeed it satisfies the Schrödinger equation (5.6) where the Hamiltonian, inherited from

the curve equation (2.11), is given by

H(x̃, ỹ = gs∂x̃) = qN − egs∂x̃ − q
1

2 ex̃egs∂x̃ + q
1

2 ex̃e2gs∂x̃ . (5.15)

The relevant open string mode connecting the compact brane and the non-compact

anti-brane is a bi-fundamental complex fermion. Therefore the path integral of the am-

plitude of the insertion of an anti-brane is given by the normalized expectation value of

determinants as

〈det(e−v − U)〉 =

N∑

n=0

[
N

n

]
q

n
2
(N−n+1)(−1)n(e−v)N−n . (5.16)

The large N dual amplitude 〈ψ∗(x̃)〉 = 〈det(e−x̃ − U)〉 satisfies the Schrödinger equa-

tion (5.7) with the Hamiltonian

H(x̃, ỹ = −gs∂x̃) = qN − e−gs∂x̃ − q−
1

2 ex̃e−gs∂x̃ + q−
1

2 ex̃e−2gs∂x̃ . (5.17)

There is a different version of the matrix model5 dual to the closed B-model [28]. This

model is a Hermitian matrix model with logarithmic action whose path integral is given

5The unitary matrix model version of the above DV matrix model is also obtained in [10].
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by
∫

dMe−
1

2gs
Tr(ln M)2 . In this matrix model, the correlation functions of determinants

are given by the Slater determinant of orthogonal polynomials. In the case at hand, the

relevant orthogonal polynomials are known as Stieltjes-Wigert ones. In particular, the

matrix model vacuum expectation value of an anti-brane is

〈det(e−x − M)〉 = (−1)Nq
1

8
N(N−3)− 1

4

N∑

n=0

[
N

n

]
q−

n
2
(n+N)(−q−

1

2 e−x)n , (5.18)

which is identical to 〈det(e−v−U)〉 with identification x = v−gsN up to an overall constant

factor.

6. Equivalence among various models

In this section we compare the amplitudes of non-compact branes in various models. We

find the exact correspondence among the non-compact branes in the topological string

theories.

The coordinate patches of Riemann sphere with four punctures. We describe

the coordinate patches of Riemann sphere characterized by the curve equation

e−Y1 + e−Y2 + e−Y3 + e−Y4 = 0

Y1 + Y2 = Y3 + Y4 + t (6.1)

in the homogeneous coordinates. It has four boundaries and there is an appropriate coor-

dinate near each boundary.

Introduce the coordinates {ui},

u1 = Y4 − Y3 , u2 = Y3 − Y1 ,

u3 = Y3 − Y4 , u4 = Y4 − Y2 , (6.2)

in which the constraints become

u2 + u4 + t = 0 , u1 + u3 = 0 . (6.3)

Then each boundary patch corresponds to the region where ui → ∞ and is described by

the local coordinate xi = ui + πi, which is the natural ‘flat’ coordinate related to the

integrality structure of A-model [23]. One can find the canonical conjugate momentum yi

in each coordinate patch by requiring yi → 0 as xi → ∞. The coordinate and conjugate

momentum and the curve equation in each patch are displayed in the table 1.

SL(2, Z) transformation in the Riemann sphere. The coordinate and momentum in

each patch are related by SL(2, Z) transformations which preserve the symplectic two form

and the periodicity of the coordinates xi and momenta yi. The coordinate transformations

from u1-patch to u2 and from u3-patch to u4 are given by SL(2, Z) transformation S−1T ,

while the coordinate transformations from u2-patch to u3 and from u4-patch to u1 are

given by T−1S−1 transformation supplemented by constant shift.

(
x1

y1

)
S−1T
−→

(
x2

y2

)
T−1S−1

−→

(
x3

y3

)
S−1T
−→

(
x4

y4

)
T−1S−1

−→

(
x1

y1

)
. (6.4)
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Table 1: coordinate patches

coordinate x momentum y curve

u1 + πi u2 + πi −e−x − ey + e−x−y−t + 1 = 0

u2 + πi −u1 − u2 + πi −e−x − ey + e−x+y−t + 1 = 0

u3 + πi u4 + πi −e−x − ey + e−x−y−t + 1 = 0

u4 + πi −u3 − u4 + πi −e−x − ey + e−x+y−t + 1 = 0

−1
T  S

−1

T  S
−1 −1

S   T
−1

S   T
−1

Figure 7: SL(2 , Z) transformations relating coordinates among patches in the Riemann surface

SL(2, Z) transformation in the toric diagram. As alluded earlier, the topological

vertex also has SL(2 , Z) transformations acting on the leg vi = (pi, qi). In the resolved

conifold case, these transformation can be considered acting on the four external legs v2,3

and v′2,3 as (
p3

q3

)
TS−1

−→

(
p2

q2

)
S−1T−1

−→

(
p′3
q′3

)
TS−1

−→

(
p′4
q′4

)
S−1T−1

−→

(
p3

q3

)
, (6.5)

which is exactly in one-to-one correspondence with the transformations in the Riemann

sphere, and can be realized, in the active view point, as moving A-branes from one leg to

another one as(see, figure 8.)

f3
ST−1

−→ f2
TS
−→ f ′

3
ST−1

−→ f ′
2

TS
−→ f3 . (6.6)

The correspondence between the transformations of A- and B-models can be easily

inferred from the moment map of the T2 action for the resolved conifold

rα(φ) = |φ4|
2 − |φ1|

2 , rβ = |φ1|
2 − |φ3|

2 , (6.7)

which can also be written as

rα(φ) = |φ2|
2 − |φ3|

2 − Re t , rβ = |φ4|
2 − |φ2|

2 + Re t . (6.8)

– 25 –



J
H
E
P
1
1
(
2
0
0
6
)
0
7
5

 

v
v

3
’

v
2
’

v2

3v

1 = v1
’

TS

TS

ST
−1

ST
−1

Figure 8: Active SL(2 , Z) transformations acting on branes at the external legs in the toric diagram

of the resolved conifold, X̃

For example, the coordinate and momentum in the u1-patch of the Riemann surface is given

by (x1, y1) = (Y4−Y3+πi, Y3−Y1+πi) whose real part is nothing but (rα+rβ,−rβ). If the

same transformation matrices are applied on (rα + rβ,−rβ) as those on (x1, y1), namely

S−1T , then naturally the transformation matrices for v3 = (p3, q3) leg become TS−1.

Therefore one may regard this exact correspondence between the transformation rules of

both sides as the consequence of the mirror symmetry between those two Calabi-Yau spaces

X̃ and Ỹ.

The wavefunction of a non-compact brane and mirror symmetry. We obtained

the A-model amplitudes of the non-compact brane inserted at the various external legs of

the toric diagram for the resolved conifold in section 3. Now we verify that these amplitudes

exactly correspond to the B-model amplitudes of the non-compact brane inserted near the

punctures of the Riemann surface in the mirror manifold of the resolved conifold, thus

confirming the mirror symmetry. This can be achieved by showing that the A-model am-

plitudes satisfy the Schrödinger equation whose Hamiltonian is given by the curve equation

H(x, y) = 0 with the replacements y = gs∂x for branes and y = −gs∂x for anti-branes.

Essentially there are only two different realizations of the curve equation as is clearly

seen in the table 1. One can see that the brane amplitude at the v3 leg in the toric diagram

for the resolved conifold satisfies
(
1 − egs∂x − (−1)pq−

1

2 e−xe−pgs∂x + (−1)pq−N− 1

2 e−xe−(p+1)gs∂x

)
Zf3

A (x, p) = 0 . (6.9)

This tells us that Zf3

A (x, p) is exactly the one-point function of the B-model non-compact

brane/fermion operator at the u1 patch, as it satisfies the Schrödinger equation with the

Hamiltonian inherited from the curve equation written in the variables for u1 patch with a

framing p. One can also check that the anti-brane amplitude at the external leg v3 obeys

the same Schrödinger equation
(
1 − e−gs∂x − (−1)pq

1

2 e−xepgs∂x + (−1)pq−N+ 1

2 e−xe(p+1)gs∂x

)
Zf3

Ā
(x, p) = 0 , (6.10)
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Figure 9: L.H.S: A-branes on the deformed conifold. R.H.S: A-branes on the resolved conifold

after the geometric transition

where now we replaced y → −gs∂x appropriate for anti-branes. Alternatively, after factor-

ing out differential operators, one can show that it satisfies
(
1 − egs∂x + (−1)pq−

1

2 e−xe(p+1)gs∂x − (−1)pq−N− 1

2 e−xe(p+2)gs∂x

)
Zf3

Ā
(x, p) = 0 . (6.11)

The Z2 symmetry of the resolved conifold, which is realized on the brane amplitude as

eq. (3.23) implies that similar differential equations hold for the amplitude of non-compact

A-branes at another legs in the toric diagram for the resolved conifold. For example, it can

be deduced from eq. (6.11) that the amplitude of non-compact A-branes at the external

leg v2 satisfies
(
1 − egs∂x − (−1)pq−

1

2 e−xe−pgs∂x + (−1)pq−N− 1

2 e−xe(1−p)gs∂x

)
Zf2

A (x, p) = 0 , (6.12)

which is nothing but the Schrödinger equation written in the variables appropriate for u2

patch. All other cases can be deduced easily, too.

These tell us that the A-model amplitudes are the same as the B-model amplitudes

supporting the mirror symmetry. We will see this explicitly in below. Note that the Z2

symmetry is the isometry of the resolved conifold and its mirror CY space. It is realized as

the relation among the (anti-)brane amplitudes in the A-model on the resolved conifold and

this should also be the case for the amplitudes in the mirror B-model. Furthermore, it is well

known that the amplitudes in the B-model behave like wavefunctions. Our computation

clearly shows that the A-model amplitudes have the properties of the wavefunction, just

like the amplitudes in the B-model.

Chern-Simons theory vs. topological vertex vs. DV matrix model. The A-model

topological open string field theory on the deformed conifold becomes the U(N) Chern-

Simons theory on S3. On the other hand, it is believed that the A-model topological string

theory on the toric Calabi-Yau space can be described by the topological vertex. There

is a large N duality between the A-model topological open string theory on Lagrangian

branes wrapped on S3 in the deformed conifold and the A-model topological string theory

on the resolved conifold which is related to the former via geometric transition.
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We can see from eq.s (3.21) and (3.22) that the knot invariants of the unknot in

Chern-Simons theory given in eq.s (2.24) and (2.27) are identical with the amplitude of

non-compact (anti-)branes inserted at the external leg v2 with p = 0 and r = −gsN/2:

〈Z(U, V )〉S3 = Zf2

A

(
V, r = −

1

2
gsN, p = 0

)
,

〈Z−1(U, V )〉S3 = Zf2

Ā

(
V, r = −

1

2
gsN, p = 0

)
.

This correspondence between the Chern-Simons knot invariants and the amplitudes at the

leg v2 is pictorially manifest from figure 9. We can also find a complete agreement for the

knot invariants at a different framing in Chern-Simons theory by taking a suitable framing

and an appropriate assignment of the position modulus r in topological vertex.

In the previous sections we computed the amplitudes of a non-compact brane in the A-

model and the B-model, independently. In the B-model we obtained the amplitude from the

large N dual DV matrix model. After an appropriate normalization, the B-model amplitude

of a non-compact brane inserted at P1 is given by the determinant expression. Again we see

that there is a similar correspondence between the amplitudes in the DV matrix model and

those in topological vertex. As alluded earlier, it is clear from the Schrödinger equation

which they satisfy. More precisely, if we use the ‘normalized’ expression in DV matrix

model, we can see that6

〈 det ew

det(ew − U)

〉
= Zf2

A (x = w − gsN + πi, p = 1) ,

〈det(ew − U)

det ew

〉
= Zf2

Ā
(x = w − gsN + πi, p = 1) . (6.13)

As was shown in (5.15) and (5.17), the unnormalized amplitude satisfies the Schrödinger

equation coming from the curve equation H(x̃, ỹ) = 0 in (2.11), which is another represen-

tation of the curve in the same u2-patch. But this curve equation is related by a suitable

framing change and rescaling from our choice of coordinates for the u2-patch, which explains

the rescaling in the B-model amplitude for the complete agreement with the topological

vertex result at the v2 leg(or u2-patch in the corresponding Riemann surface) with framing

change. After this identification, we can obtain all the other amplitudes of non-compact

branes in different patch by suitable SL(2, Z) transformations.
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A. Schur functions

In this appendix we present various properties and formulae of Schur functions, which are

used in the computation of the topological vertex. Although most of them are just the

summary of well-known results [30], one useful identity is presented with a proof, which

does not seem to be written down explicitly in the literatures.

Schur functions for a partition µ = (µ1, µ2, . . . , µd) may be defined as

sµ(xi) ≡ sµ(x1, . . . , xN ) =
detxµi+N−i

j

detxN−i
j

, (A.1)

which can also be represented in terms of elementary or completely symmetric functions

as

sµ(xi) = det(eµt
i−i+j) = det(hµi−i+j) . (A.2)

These symmetric functions hn and en can be defined as

N∏

i=1

(1 − xi t)
−1 =

∞∑

n=0

tnhn(xi) ,

N∏

i=1

(1 + xit) =

N∑

n=0

tnen(xi) . (A.3)

Note that sµ is homogeneous of degree |µ|. For the explicit expression of Schur func-

tions relevant to our cases, it is convenient to introduce the content c(a), and the hook-length

h(a), at the position a = (i, j) ∈ µ of a Young diagram µ, which are defined by

c(a) ≡ j − i , h(a) ≡ µi + µt
j − i − j + 1 .

These c(a) and h(a) satisfy

∑

a∈µ

c(a) = n(µt) − n(µ) =
1

2

d(µ)∑

i=1

µi(µi − 2i + 1) ≡
1

2
κµ ,

∑

a∈µ

h(a) =
1

2
κµ + 2n(µ) + |µ| ,

(A.4)

where d(µ) denotes the number of rows for the given Young diagram µ. By specializing

xi = q−i+1/2 with the formula in [30], one can derive

sµ(q−i+ 1

2 ) = q−n(µ)− 1

2
|µ|

∏

a∈µ

1 − q−N−c(a)

1 − q−h(a)
= q−

|µ|
2

N
∏

a∈µ

q
N
2

+ 1

2
c(a) − q−

N
2
− 1

2
c(a)

q
1

2
h(a) − q−

1

2
h(a)

, (A.5)

where n(µ) ≡
∑d(µ)

i=1 (i − 1)µi. Note that q
N
2
|µ|sµ(q−i+1/2) is nothing but the quantum

dimension or the knot invariants for the unknots. The given form is efficient to get the

explicit expression of the quantum dimension for a Young diagram of the small number of

boxes.

Using another identities given in [30]

∏

a∈µ

(1 − th(a)) =

∏d(µ)
i=1

∏d(µ)+µi−i
k=1 (1 − tk)∏

1≤i<j≤d(µ)(1 − tµi−µj+j−i)
, (A.6)
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∏

a∈µ

(1 − tN+c(a)) =

d(µ)∏

i=1

µi−i∏

k=−i+1

(1 − tN+k) ,

one can get the form of the quantum dimension given in [2]

sµ(q
N
2
−i+ 1

2 ) = dimq µ =
∏

1≤i<j≤d(µ)

[µi − µj + j − i]

d(µ)∏

i=1

∏µi−i
k=−i+1[k]qN

∏d(µ)+µi−i
k=1 [k]

=
∏

1≤i<j≤d(µ)

[µi − µj + j − i]

[j − i]

d(µ)∏

i=1

∏µi−i
k=−i+1[k]qN∏µi

k=1[k − i + l(µ)]
, (A.7)

where [k] ≡ q
k
2 − q−

k
2 and [k]qN ≡ q

N
2

+ k
2 − q−

N
2
− k

2 .

Skew Schur functions can be introduced as

sλ/µ =
∑

ν

cλ
µνsν , (A.8)

where the ‘tensor product coefficient’ cλ
µν are integers defined by sµsν =

∑
λ cλ

µνsλ. Note

that sλ/µ is a homogeneous function of degree |λ| − |µ| and Schur functions can be un-

derstood as a special case of skew Schur functions since sλ/• = sλ. As in [9], sλ/µ(qµ+ρ)

represents a skew Schur function of infinite number of variables with the specialized xi =

qµi−i+1/2 (i = 1, 2, . . .), which can be understood as taking N → ∞ in the case of the finite

number of xi. In particular, sµ(qρ) can be written explicitly as

sµ(qρ) = q−n(µ)− 1

2
|µ|

∏

a∈µ

1

1 − q−h(a)
, (A.9)

which leads to

sµt(qρ) = q−κµ/2sµ(qρ) . (A.10)

By analytic continuation one may see

sµ(q−ρ) = (−1)|µ|sµt(qρ) . (A.11)

The definition of Schur functions as a ratio of determinants given in (A.1) leads to the

following identity for a finite number of variables xi = qN−i, qµi+N−i (i = 1, 2, . . . , N)

sµ(qN−i)sν(q
µi+N−i) = sµ(qνi+N−i)sν(q

N−i) , (A.12)

which gives us in the limit of N → ∞

sµ(qρ)sν(q
µ+ρ) = sµ(qν+ρ)sν(q

ρ) . (A.13)

Another useful formulae for skew Scur functions [30]:

∑

λ

sλ/µ(x)sλ/ν(y) =
∏

i,j≥1

1

1 − xiyj

∑

σ

sν/σ(x)sµ/σ(y) , (A.14)
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∑

λ

sλ/µt(x)sλt/ν(y) =
∏

i,j≥1

(1 + xiyj)
∑

σ

sνt/σ(x)sµ/σt(y) . (A.15)

Now, we will derive a useful formula for the topological vertex calculations.

Proposition: The following identity holds

sµ(x) =
∑

ν

sµ/ν(x, y)sνt(−y) . (A.16)

Proof: Let us start from the following identity (see, [30])

sλ(x, y) =
∑

ν

sλ/ν(x)sν(y) =
∑

ν,µ,λ

cλ
νµsµ(x)sν(y) .

Multiplying sλ(y) and summing over λ, one get
∑

λ

sλ(x, y)sλ(y) =
∑

ν,µ,λ

cλ
νµsµ(x)sν(y)sλ(y)

=
∑

ν

sν(y)sν(y)
∑

µ

sµ(x)sµ(y) .

Using eq.s (A.14) and (A.15), one get

∑

ν

sν(y)sν(y) =
[∑

ν

sν(y)sνt(−y)
]−1

,

which leads to
∑

µ

sµ(x)sµ(y) =
∑

λ

sλ(x, y)sλ(y)
∑

ν

sν(y)sνt(−y) ,

=
∑

µ

[∑

λ,ν

cµ
νλsλ(x, y)sνt(−y)

]
sµ(y) .

Since Schur functions sµ form a Z-basis for symmetric functions, the coefficient of sµ(y) in

the above equation should be identical. So, the proposition is proved.

As an application of the above proposition, let us take

x1 = q−
1

2 , x2 = q−
3

2 , · · · , xN = q−N+ 1

2 , xN+1 = xN+2 = · · · = 0 ,

yi = q−N−i+ 1

2 , i = 1, 2, 3, . . . ,

which gives us sµ(x, y) = sµ(qρ). Then, we can see that

Corollary:

sµ(q−i+ 1

2 ) ≡ sµ(q−
1

2 , . . . , q−N+ 1

2 ) =
∑

ν

sµ/ν(qρ)sνt(−q−Nqρ) . (A.17)

Now, we present the skew-Schur function representation of topological vertex, which

is used in section 3. U(∞) Hopf link invariants, Wµν , which are basic ingredients for the

construction of topological vertex, can be written by skew Schur functions as

Wµν(q) = qκν/2C•µνt(q) = qκµ/2+κν/2
∑

λ

sµt/λ(qρ)sνt/λ(qρ) = sµ(qρ)sν(q
µ+ρ) ,
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W•µ(q) = C••µ(q) = sµ(qρ) . (A.18)

Then, topological vertex is given in terms of skew Schur functions by [9, 31, 32]

Cλµν(q) = Cµνλ(q) = Cνλµ(q) = qκλ/2+κν/2sνt(qρ)
∑

η

sλt/η(q
ν+ρ)sµ/η(q

νt+ρ) . (A.19)

Note that the Z2 and Z3 symmetry of the topological vertex implies the existence of cor-

responding identities inherited from these symmetries in skew-Schur functions.
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